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"As the matter becomes clear, one tends to forget the difficulties and the mystery which sur-
round the problem in the beginning. What once was strange becomes first evident and then natural!
The problem ceases to be a problem, it fades into nothing and disappears in the night of the past."

V. Kourganoff
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NOMENCLATURE

a absorptivity
A area, cm 2

specific heat at constant pressure, cal g K-
d layer thickness, cm
Ex  radiative energy, cal
/x,(T) spectral emission radiance, W cm - 3 Am - I sr - I

k thermal conductivity, cal cm - 1 s K-

Nx spectral radiance. W cm - sr- n im-  "
Nb spectral radiance of blackbody, W cm- 2 sr-n Aim-1

Np Number of particles per volume, cm - 3

P ( ) phase function
q,, heat flow owing to conduction, cal cm - s- I

qr heat flow owing to radiation, cal cm 2 s-

rX reflectivity
s length, cm
S energy generation rate per unit volume per unit time, cal cm s
T absolute temperature, K
W Planck's function at wavelength X, W cm -2 Am -

X spectral emissive flux of a source at wavelength X, W cm- 2 Am-

Xta absorption coefficient, cm-
X scattering coefficient, cm-.

Ex spectral emissivity
O azimuth angle
rX  transmittivity
X wavelength, Aim
p density, g cm - 3

USC scattering cross section, cm 2

T optical thickness
0 polar angle
Q? solid angle around the direction of propagation

direction of propagation
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RADIATIVE HEAT TRANSFER AND SELECTIVE EMISSION IN
PLANAR SLAB COATINGS ON HOT EMISSIVE SUBSTRATES

INTRODUCTION

This study determines the theoretical conditions necessary for selective emission of infrared (IR)
radiation from a smooth planar coating in thermal contact with a hot substrate. The standard for ther-
real radiation output is the blackbody, which absorbs and emits more thermal energy, either total or in
an arbitrar, spectral interval, than any other type of source at the same temperature. The spectral
distribution curve of a blackbody provides the limiting envelope for the other type of radiators. The
figure of merit as to how a real source compares to a blackbody is known as the emissivity EX and is
defined by

Wsurce

where Ws'urc' denotes the spectral emissive flux (W cm- 2 m ) of the source at wavelength X and
Wb denotes the spectral blackbody emissive flux that is given by the Planck equation [1]

Wb (7') = - (2)
.',1' X5 eC,/XT1

where

h = (6.6256 : 0.0005) x 10- 34 W s2 is Planck's constant,
T is absolute temperature, K,
c = (2.997925 h 0.000003) x 10 10 cm s - 1 is the velocity of light,

* -cl = 2rhc2 = (3.7415 - 0.0003) x 104 W cm 2 / m4 is the first radiation constant,
C2 = ch/k = (1.43879 + 0.00019) x 104 ;LmK is the second radiation constant,

" kb = (1.38054 :L 0.00018) X 10-23 Ws K - ' is Boltzmann's constant, and
X is the wavelength, 0m.

From Eq. (I), three classes of sources can be distinguished by the spectral emissivity

* blackbody cx equals i,

* graybody (x is a constant less than 1, and

* selective emitter cx, a variable dependent on X.

Manuscript approved April 23, 1987.
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LAFEMINA AND LADOUCEUR

Figure 1 shows the comparison between these three types of radiators. The spectral blackbody radi-an x -~ 2 src ttl sif 1m ) is related to W" (T) by

W T)=J_ Nx (T) t ddp = rN" (T). (3)

\khere p cos 6: 6 is the polar angle. and r is the azimuthal angle in spherical coordinates.
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A quantitative model to predict the IR output from isothermal coatines in Lontact with \arious

'Muotratc can hc forul1at11cj froi the .01lint1k Of the radiati\e rnst'er equation. The radiative
trtnfcI equation is a first-order differential equation that govrns the spatial distribution of the spec-
tral radiance in an absorbing and emitting medium. The radiative transfer equation is well known to

the heat-transfer engineer and the astrophysicist. However, in most engineering applications the net
flux and temperature distribution within the system is of primary interest. A common engineering

" - approximation is to treat the medium as a graybody and compute the net radiative flux and tempera-

-- ture distribution under this assumption. There has been very little formal analysis of spectral emis-
sion in such systems.

In astrophysics, it is recognized that the absorption coefficient of a stellar atmosphere varies not
only with radial position but also with wavelength. Nevertheless, many of the theoretical analyses of
astrophysical observations define a mean absorption coefficient and treat the stellar atmosphere as a
graybody for mathematical simplicity. Since our concern is with spectral emission, the analysis for-
mulated here must avoid the graybody approximation. In the next section a formal solution for the
spectral IR output of an isothermal composite slab is obtained from the radiative transfer equation.

To make the analysis mathematically tractable we introduce a number of assumptions. The

material,, of the composite slab are considered homogeneous so that the attenuation of radiation by
scattering can be neglected compared to absorption. In addition, the materials are considered i.;.,tro-
pic so that the medium can be characterized by a single, uniform index of refraction. Local thermo-
dynamic equilibrium (LTE) is assumed to exist throughout the medium so that Kirchhoffs and
Planck's laws are valid. The formal solution obtained in the next section is used to investigate the

effects of various input parameters on the IR output of the composite slab. The effects of coating
thickness. coating absorption coefficient, substrate emissivity, and temperature are analyzed.

ENERGY TRANSFER EQUATIONS

The general equations for a conducting and radiating medium can be derived by making an

cnerg\, balance on an arbitrary volume of matter. This energy balance equates the time rate of change

of' the energv stored in the volume element to the sum of the net heat flow into the element resulting
from conduction, radiation, and heat generation within the volume element. The resulting equation

for the temperature distribution is

"' " aT(-F, t )aT(p ) - V (4I. + rr) + S(F, 1), (4)

at
* with

= -kV T(F, t) (Fourier Law). (5a)

and

SN~(f, t )d d X(5b)

x& here

p is the densit ,

(11 is the specific heat at constant pressure.
k is the thermal conductivity, and
S is the energy generation rate per unit volume per unit time.

*• 3
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LAFEMINA AND LADOUCEUR

Equation (4) is a partial differential equation for temperature T. Once the temperature distribu-

tion is known, the heat transferred by conduction is readily determined from Eq. (5a). Since the radi-
ation term in Eq. (5b) depends not only on the local temperature but also on the entire surrounding
radiation field, the energy equation is an integrodifferential equation for the temperature distribution
in the medium. The divergence of the radiative flux represents the net rate of gain for radiant energy

- • per unit volume at any point P(F) resulting from the excess of absorbed over emitted radiation. The

expressions for the radiative flux and its divergence are discussed below.

Radiation Transport Equations

Consider the radiative transfer in a plane layer of material, as shown in Fig. 2, in which the
temperature depends only on the coordinate in the z direction. The medium is of infinite extent in -i
and v directions, and the boundary conditions are such that the temperature and radiation fields do not

depend on x and y'. The layer is an absorbing, emitting, and scattering planar slab of thickness d
that is in contact with a hot substrate that is maintained at a uniform temperature T, . For this planar
system with uniform boundary conditions, the radiative heat transfer is one-dimensional and depends
on the depth only. The transfer equation (derived in Appendix A) becomes

d^js, Q, t) o)S,
+ (ca + C, s) N X (s, 2, t) = Jf(s, T) + 4P( '' f) Nx(s' 1')dQ' (6)

where the spectral radiance due to emission is Jf(s, T).

'f.. z,%%

d ==x(S0) 
TX

.1'N' -' d= - COATING

S0
HOT SUBSTRATE

Fig. 2 - Physical model and nomenclature
for a planar slab coating on a hot substrate

In Eq. (6) ' and a' are the spectral absorption and scattering coefficients, respectively, in units of
cm . s is the length measured along an arbitrary direction (t, r is time, 0 is the polar angle as dep-
icted in Fig. 2. is the solid angle around the direction of propagation 2, and P(1' 2 is the phase
function. Equation (6) assumes that the participating medium is isotropic and hornogeneous, other-
wise " and a, would he functions of direction and position. Since s cos t). the directional
deriv:tive can he -:<rrcd in terrn: ,f the derivatives with resvect to the space coordinate '1

">d"
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where u is the cosine of the angle 0 between the direction f of the team and the z axis. It is con-
venient to define the optical thickness rx:

= (a" + as)d '. (8)

The independent variable s in Eq. (6) can be rewritten in terms of rT.

MODEL 1: Nonscattering System at Uniform Temperature T,

For a homogeneous, isotropic coating that absorbs and emits radiation but does not scatter it
(ce' = 0), Eq. (8) reduces to rX = a"z and the radiative transfer equation is written

aNx(rTX, gt, €) J> (rx, T)

aT) u p + N x(T, , T)=, (9a)

with the boundary condition at TX =0

Nx(O, IL) = N (Ti), (9b)

where E' is the substrate emissivity and the reflected energy from interfaces at TX= 0 and Tx
are assumed here to the negligible. For azimuthal symmetry, the radiance is independent of ,p and
Eq. (9a) becomes

0~NX(rx, a) .f)e(x,

. IX+ NX(T x , IT) 0 < TX <_ 7"hl. (10)

The spectral radiance Nx(Tx, tI) in the absorbing and emitting coating layer is determined from the
solution of Eq. (10). Before arriving at the formal solution it is desirable to divide Nx(rx, ji) into two
contributions: the radiance directed in the positive direction (a > 0) denoted by N (T,, I); and the
radiance directed in the negative direction (,u < 0) denoted by NX (TX, U). Equation (10) is then
separated into NX+ (TX, A) and NX- (7X, I) components, and the resulting equations along with the asso-
ciated boundary conditions are given as

aN+ (TX, I) J>(TX, T)
NaTX X+ (rX, j) = ji > 0, ( la)

with

Nx (0, x) = Nb(TO) (I Ib)

and

8N>7 (TX, I) I)(Tx, T)
+ NX-(T>,,IL)= T) < 0, (12a)ax rx ,a

with

NX (x, A) = r 2,\Nx (rT,, -1A), (12b)

* 5W
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LAFEMINA AND LADOUCEUR

where rix denotes the specular reflectivity off the boundary surface rX 7-W The reflectivity. r_,X,
can be computed for a smooth surface from the Fresnel equations. Using an integrating factor and
then combining the two terms on the left-hand side of Eq. (1 Ia) into a total differential yields

d1Nx exp (xt)
' f(Tx, T) exp (T-X/p) A. > 0. (1 3a)

In a similar manner, Eq. (12a) becomes

d[N7- exp (7TX/p)I __

~K.- fe(Tr>, T) exp (TX/.) p. < 0. (1 3b)

*Integration of both sides of Eqs. (13a) and (13b) with respect to 7X. and rearranging terms using the
boundary conditions gives

ep (-T/.
N7 AT.p) N -> (0. it) exp (-Tx/tt) + j /'(-r. T) exp (-r/p.) dr. (14a)

* and

N(TX, p.) =N) (Tb , p.) exp [(-ru I e~/. f (T. T) exp (r /p. d'r.. (14b)

Equations (14a) and 014b) are forma) solutions for the spectral radiance in the positive and nega-
tive z directions. respectively. In general the temperature T is a function of TX. However, if the
coating is thin, temperature gradients can be neglected and by using the isothermal assumption, T
may be approximated by T,. With this approximation fX'(-r, T,) is a constant and can be factored
from inside the integral sign and Eqs. (14a) and (14b) are rewritten as

~X (7-X, p.) = NX' (0, p.) exp (-rX/p.) + jexp !(7r - r-x)/p)j dr (15a)

N 7 (TX. a)1 Nx- (T>,. p) exp [(rT - iipAi - 'T expl(rT - rx)/p. dri (15b)

- -~ or. by replacing p. by -p., Eq. (15b) becomes

*NX- (T,. -p Nx- (Tr>, -p.) exp [-(7b, - TX)/pJt 4-+ ( , exp [(rx -r)pju di;.. (16)

Assuming that the miedium is in local thermodynamic equilibrium and that lKirchhoff's law is valid.
the spectral radiance resulting from emission is given by

CXN (T,(17)

4%e~

6
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To determine the net spectral radiance at the optical thickness Trx, Eqs. (15a) and (16) must be com-
bined as

N~e(X s N' (,r), A) - (r), As).(8

Integrating Eqs. (15a) and (16) with respect to T and using the thermodynamic equilibrium condition
from Eq. (17) gives

Ax~ At) N N>(0, At) exp (TX/IA) + N b(T 5 ) [1 - exp (-X/It)J. (19a)

N(Tx, -At) N N>(r>d, -A) exp f(Tx, - rxd)/,tJ Nb)(T~)[x (x-T~)/L 11. (19b)

By !i. ing the boundary conditions for N + (0, Ai) and N> (T>.d, -A) from Eqs. (Ilb) and (12b) the
above equations become

Nx~r~ ~t -~sb ()ex(-irxIA) + N b (T') [I -p(Tx)/$ (20a

N~(x, ) =£~N(T), exp (-/ T,) e(xp [ exp (20a)

0 X(T,- r2 [(EXNX(T,) exp (-T>4 4t) + NX(T,) (I exp (->/)]exp [(TX -TXd)IA

+ N(T) Iexp IT - d)IA - 1]. (21b)

destterin by EstigTnE. (21) tha(0bi to then r8gieduest

Nr e(X Nb(T )l rX] exp (-TxdIj) + N -(,)( exp (-T>)1. (22)Tx T)d)A

Equat ion (22) is the central result of our analysis. This is the general Solution for the radiance
emitted from an absorbing. emitting. nonscattering planar slab coating of thickness el on a hot sub-
strate of emissivity (' The physical significance of the various terms in Eq. (22) are as follow.s. The

* -firt term. o the rigeht -hand side is the contribution from the hot substrate attenuated h\ the optical
thl, iw- thc ,econd term is the contrihutionn to thm' radiancee fromi the emission alone- the rath

1' r f-th. Itti I I ,I aIL "Mill I,!.11 spleetlirT retlectix itN at th 11-W dar 11Ma.(I Ts ftcc

$ 7

%
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Or ,LAFEMINA AND LADOUCEUR

" Case 1: Substrate Is a Blackbody (d = 1 and r2 = 0).

Equation (22) reduces to

Ne(rd)= N"(T;) [11 = N (T). (23)

This leads to Conclusion I:

If a coating of a selective emitter is applied to a blackbody substrate and forms a non-
scattering, absorbing, and emitting laver in thermodynamic equilibrium with the sub-
strate. then the composite system can only emit as a BLACKBODY.

Case II: Role of Optical Thickness

The optical thickness r>d was defined by Eq. (8) and related the absorption coefficient ot' and

the geometric thickness d of the layer. In an optically thick regime, the quantity Tr.j approaches

infinity. The exponential terms in Eq. (22) approach zero and when rm× = 0, this equation reduces to

net = N (T,) Ill = Nb(T,). (24)

This result leads to Conclusion II:

In an optically thick limit the composite system described by Fig. 2 can emit
only s a BLACKBODY.

This conclusion is independent of the nature of the substrate and the selective emission charac-
teristics of the coating. It is also valid for emission from hot gases such as those found in IR flares
121. The addition of selective emitters to a hot flare plume cannot change the spectral IR output if the
plume is optically thick. Figure 3 shows an example of how the optical thickness effects the IR radi-
ance of sheets of ordinary window glass of various thicknesses at 1000 0 C. Note that the spectral
emissive power approaches that of a blackbody as the sheet thickness x goes to infinity for nonzero
spectral absorption coefficients. The reflectivity factor in Eq. (22) causes the emissivity to differ
from 1.0 as the glass thickness approaches infinity.

When ux"' = 0, the optical thickness rX is 0. the exponential terms approach I in Eq. (22). and
" when r, = 0. Eq. (22) reduces to

N X (T). (25)

Inder these circumstances the spectral radiance is determined entirely h tile substrate emissiity and
* . cmperaturc.

The pctral transmis.jivitv F,5 measured in the direction of piopagation is defined as

F =e =e (26)

* 8 N- N

% %%
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LAFEMINA AND LADOUCEUR

The conservation of energy within the coating is expressed by

ax + 1, + rx = 1, (27)

where ax is the spectral absorptivitv and rx is the spectral reflectivity.

in the present analysis, the spectral reflectivity is assumed to be negligible: i.e., rx i 0 and
Kirchhoff's law is assumed to be applicable, which implies that ax = Ex. Equation (27) then can be
written in terms of the emissivity of the coating layer of thickness d as

Xa' = -e = 1 - exp (-rx)=E . (28)

Substituting Eq. (28) into Eq. (22) yields the general solution

-Net(7xd) = Nb)(T,) [Ex' exp (-rX) + ef]. (29)

In the optically thin regime, r7x approaches 0, and Eq. (29) is approximated by

o N ) b(T 1 ) [f, + E - E(30)

where f is the emissivity of the coating. This equation expresses the net spectral radiance in terms
of measurable or assumed spectral emissivities.

Case III: Opaque Substrate of Negligible Emissivity (E' << I)

If the substrate emissivity e' in Eq. (29) is small, the intensity equation reduces to the approxi-

mate form

" = N>,( X (31)

Figure 4 shows the measured selective emission of a finite thickness of silicon dioxide (E = 0).
Equation (31) reveals that if a selective emitter is applied to a substrate of much lower spectral emis-
sivity (e.g., a metal), the radiated intensity from the composite system is dominated by the emissivity
of the coating layer.

This leads to Conclusion III:

If a coating of a selective emitter is applied to a metallic (low emissivity, i.e.,
IR blocker) substrate and forms a nonscattering, absorbing, emitting layer in
thermodynamic equilibrium with the substrate, the spectral radiance of the

* composite system will be dominated by the EMISSIVE PROPERTIES OF
THE COATING.

.As an example of this case, consider a hot steel substrate at 1273 K (10000C) coated with a
,- lai fc ,Ilicon dioxide in thermal equilibrium Figure 5 ,hovks the normal spectral emi sivit, for

"hew :;ireritiV r the :ie temperature. The radiance 1,r a hlackbod, and the stocl and silicon diox-
!I, , -1, . ree 1i ill" thi 'lllpcratluk c .an e coilpard hm usin l q. 0t). i- IL-

,re fi ,,h the rult ,. ,xhich demonstrate the selecti\,c IR emission for this s,,stemi.

10

q % - % % % %
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Appendix A

DERIVATION OF THE RADIATIVE TRANSFER EQUATION

The propagation of radiation at any point in a medium cannot be represented by a single vector
as in the case of heat flow by conduction. To specify the radiation incident at a given point within
the medium, one must know the radiation from all directions because radiation beams are independent

: " of one another. The amount of radiation energy transmitted by the ray in any given direction per unit
time is the spectral radiance. To define the quantity we consider an element of surface area dA
located about the space coordinate 7 as illustrated in Fig. A I. Let fi be a normal unit-direction vector
to dA and let dEx denote the amount of radiative energy in the wavelength interval X to X + dX, con-
fined to an element of solid angle dQ around the direction of propagation ( streaming through the ele-
mental surface dA during the time interval between t and t + dt. Let 0 be the polar angle between
i and the direction of propagation Q. The spectral radiance Nx is defined as

,.^k

*dE xNx= (Al)
dA cos 0 dt d2 dX

n /A

dA

0

Fig. Al I Symbols for the
definition of radiance

The spectral radiance in a given direction in a nonattenuating and nonemitting medium with constant
properties is independent of position along that direction. This invariance of spectral radiance when

no( attenuation or emission is present provides a convenient way of specifying the magnitude of any
attenuation or emission as these effects are given directly by the change in radiance with distance
trave-led through the medium. In the engineering community, the quantity defined by Eq. (Al) is
often called the spectral intensit.

*Radiation traveling along a path is attenuated by absorption and scattering and enhanced by
emnission (both spontaneous and induced) and radiatio;n scattered in the path direction from other
d irctlIon, " ithin the miedium11. 'rhc processes, of' absorption. emission, and scattering can be written as
-in enerL'\ balance over a small %rolume element of' the medium. Consider an elementarv cylinder, the

ai o hic:h is directed along a given direction of propagation ) (cos, 0 = I). Let the 'area of' the
m~lcr. b e b , and let the clnc\heiieht be (A.\ The spectral radiance where thle ray enters

rii c.in~.'r denotled K. \ and the' spccfraJ radiancc ML'a Ithe Cylinder I,~ dcnotces h.
T~~ic %kthir the c~ lndet interakt-. %kiih the radiation, the net chanee In the qc'Tali radiance

O(i. dlia or I th Pe qunl'(111\
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IN\ J4I (t dQ d.X

rcprc,,ent, the difference in the radiati\c energ, crossing the surface dA at s - JA and s in thc time
interval dt about I and in the ,avelength interval dX about X, and contained in an element of solid
angle dQ about the direction . Let G. represent the net gain of radiative energy by the beam in the
volume element dAds per unit volume, per unit time about t, per unit wavelength about X, and per
unit solid angle about the direction Q. Then the quantity

GxdAdtdfdds, (A3)

represents the net gain of radiative energy by the beam contained in an element of solid angle (IQ
about the direction Q, in the time interval dt, in the wavelength interval dX, and in the cylindrical
volume element dAds. By equating the quantities (A2) and (A3). we obtain

dN \

The spatial derivative in Eq. (A4) assumes that the observer is moving with the radiation beani at a
speed c (Lagrangian frame). The distance ds traversed by the beam in time dit is given by

- ds = cdt. (A5)

To compute the derivative with respect to space in a fixed coordinate system (Eulerian frame), one
must use the substantial derivative and Eq. (A4) becomes

+at 7 ×.(6

,¢, + = Gx . (A7)
c t as

In most applications, the first term in this equation can be neglected because of the large magnitude of
P the speed of propagation c. We now derive explicit expressions for the various components of GX:

G x = G+ G + + GM. (A8)

where G" is absorption. G., is out-scattering. G"' is in-scattering . and G M is emission.

. Consider radiation of radiance Nl.s, 2) traveling in an absorbing, emitting. and scattering
% imedium. As the radiation passes through the cylindrical volume element, it is attenuated b\ a sorp-

tion. The decrease in energy per unit volume, per unit time about t. per unit \avelength about X,
and per unit solid angle about the direction 2 is given by the phenomenological Bouger-Larnbert La,

14

%~ %*.. -*- V. ~ .' ~'



-, 7.-. . -: 'r "'N7%

NRL REPORT 9073

The spectral absorption coefficient (i" is a ph sical property of the m,diunl and has the unit, of
reciprocal length. In general, it is a function of temperature. pressure. material composition. and
radiation waelength. The absorption process considered in Fq. (AIi includes L both "true ahsorpti m"
and stimulated emission because both processe,, are proportional to the radiance of the iIcident radia-
tion The net absorption of the mCdiul ma\ be positi,.e or negati\e, depending on Mhcther -true
Absorption' or stimulated emission dominates.

Fhe etent of scattering \%.ithin the Medium depends on the nmber dCIts, of scattering particles

. i thin thc medium and the scatterimg cross section o of an indi., dual scattering particle. The
clo,, section for ,cattering is tile apparent area that a particle present, to an incident beam insofar a,

the particle,, abilit\ to deflect radiation from the beam is concerned. The scattering cross section
depends on the particle si/e. geometr , material composition, radiation ,% a elength. and polariiation
The decrease in spectral radiance per unit time, %olumC solid angle, and va,, elength resulting from

the ,cattering out of the incident beam direction is gi,,en h\

- o - o
G, (A1

\where a,, denotes the spectral scattering coefficient. The scattering coefficient can be regarded as the
reciprocal of the mean free path that the radiation traverses before being scattered.

Since radiation is scattered from paths adjacent to the volume element under consideration, the
scattering process can also enhance the spectral radiance along the distance ds. To calculate the
enhancement from this incoming scattering, the directional distribution of the scattered radiation is
required. This distribution is described by an angularly dependent phase function Px& " f). Physi-

cally, the phase function is interpreted as the scattered radiance in a particular direction divided by the
radiance that would be scattered in that direction if' the scattering were isotropic. If the scattering
particles in the medium are modeled as isotropic spheres and the medium has no preferential direction
for scattering, then the phase function depends only on the angle between the incident direction U and
the scattered direction U' Mathematically. the phase function can be related to a probability density.
The quantity defined by II

,I 4, .) dQ'. (Al l)
4,r

represents the probability that an incident bean of radiation traveling in direction U will be scattered
into an element of solid angle /1' about the direction U'. The scattering of the incident radiation.
A.0U.V Fl. h the medium per unit time, per unit volurie, per unit wavelength into an element of solid

angle dQ' about the direction ' is given b,

(it?) d --- PM2 fl II,(A2

i1,oo .
"  

.r

r¢ '.e4 7r

In general, the scattered radiation ,xill be incident on the volume element from all directions.
The integration of Eq. (A 12) over all solid angles of incidence yields

*¢ a '""6 (;'- 4r"; P'fl fl {'1} N, 'm. )t (At13)

which represents the scattering of radiation incident on the volum1e element from all directions into the
t% solid angle dil' about the direction ' per unit time, per unit volume, and per unit wavelength.

15
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If the medium is in local thermodynamic equilibrium, spontaneous emission along path length ds
enhances the radiance in the s direction by

amG EM = Ce N'x (A 14)

where N" is Planck's function. Equation (A14) is a mathematical statement of Kirchhoffs law. The
assumption of local thermodynamic equilibrium simply means that the matter contained in the cylin-
drical volume is in thermodynamic equilibrium with itself but not necessarily with the radiation field
IAll.

- Given these explicit expressions for the components of Gx, the radiative transfer equation
immediately follows from Eqs. (A4) and (A8):

dN - (cx + a) Nx + 1 ' Px (')Nx(s, )d + crN b , (A15)

ds 4ir

2". or

('."dNx(s,Q, t) S * N~~l'd2 A6

+ (ae + °e)NX(s ,Q,) NX(s, T) + - P P x  d .'  "
ds X X4w 1=4v

For further details see Ref. A2.
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Appendix B

AVERAGE (H EMIISPH ERICAL1) SPECTRAL RAD)IANCE CALCULATION

The average spectral radiance tbOr azimuthally symmetric radiation is defined as

Gx(Tx) 0 Nx\(rx. p) d/i d~poB
-,( X = 71 B 1

wkhich in the present case of- radiances in the forward and backward directions becomles

(;x(x) - NX (7X. p) clj j NX (7,\ pi) dit

Subhtitutioin of' Eq. I 5a, and (16) into Eq. (132) yields the formal solution for the spcrlradiance as

G =r N; (0. pi) eXp -TX/p) (Il

4- eXp I(7 - TQ)/J t1r du

% (7W~-p eXP I(TA B))P(A(33

CX 1( , - ,I l / - tp

/vt

7,1 1 CN4) ( , t

CXitPn I T' r ) d7 i

(X. It) 7, 7,) 'A (Ip (ilB

Ww' P%
% % % ~i x l~~)p r ~
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Bv using the exponential integral function defined as

E,(z) = Io rn 2e-:/ dt. (B5)

Eq. (B4) is written as

Go.((rb) = t,(T,)E 2 (rx) + d Er _=)(, E'N× 2()) ox E I (T) ,)

- r 2xNb(T,)lfE2(rx) + E2(rid - Tx)+ E,(2rT TX)]

+ Nb(T) Ei(rk -T) dr'.

The twxo integral terms in Eq. (B6) can be reduced to a simpler form by using an identity of the
exponential integral as

-' (T,) E( - TX) dT + 1IE - r>) drj

=N(T,)2 - E2(r×) - - rX)]. (B7)

Substitution of Eq. (B7) into Eq. (B6) gives the average spectral radiance as

GX( X )  N(T,) IE,(r-) + 2 - E2(rX)

E - X - - rixic' E 2 (r x )

+ rELr -TX) - E(2Tj - Tx)JI. (B8)

-. "

The spectral radiance observed at the surface of the slab is determined by setting T X = rTj in
"q. (B3), Ahich then becomes

-(rj) =N )TI\.,(ri) + I -',(r) - rsi >E(r.,) + I - E,(rU)I] (B9a)

or

.(-r) = N(T,)II - r(T I II + E,(TW) ((X - Il. (B9b)
'

Under these circumstances the spectral radiance is determined entirely by the substrate emis-
sivity and temperature. When rX is small, the exponential function E2(rX ) can be expanded into a

series expansion approximation as

• ( 18
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E,(rx) = I - Tx + yrx + O(Tr), (B10)

vAhere , 0.577216 (Euler'S constant), and 0(Tx) are higher order terms.

Substitution of Eq. (BI0) into Eq. (B9) yields

Gx(r,) - N(T,.) 1 - r2x] [1 + (I - x + yTx) (W, I)], (BI1)

which can be reduced to

G,(r ) = N"(T,) 11 - r,)] [E(I - 'T) + "'r . (B12)

\ herc -, = I~

B\ LIIIILI T, from Eq. (29). the aNerage spectral radiance in the above equation becomes

G x(Tr/ = N(T,)II - r j l - - 'd) + -yeJ. (B13)

* .or

'X = ,V "(T,[1 - rex] [c + - (B14)

,~hcrc i - , "r

Upon comparison of net radiance normal to the surface of the slab (Eq .3() and the average
radiance o-cr the hemisphere (Eq. B14) with r,, = 0. it is seen that the effect of averaging conies in
h\ rcplacing the emissi\ itN of the coating layer b,, hemispherical emissivity.
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